Modelling Exponential Family Time Series Data

نویسندگان

  • Michael A. Benjamin
  • Robert A. Rigby
  • Mikis D. Stasinopoulos
چکیده

In this paper we have proposed a class of Generalized Autoregressive Moving Average (GARMA) models which extend univariate ARMA models to a non-Gaussian situation (i.e. they extend the univariate Generalized Linear Model to incorporate time dependence in the observations). The simplicity of the tting algorithm within the iteratively reweighted least squares (IRLS) framework will be shown. Model properties and model inference will also be illustrated by a practical example.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Marshall-Olkin Family of Distributions and their applications in reliability theory, time series modeling and stress-strength analysis

Abstract: In this paper we consider various Marshall-Olkin distributions and develop autoregressive minification processes with stationary marginals as exponential, Weibull, uniform, Pareto, Gumbel, Lomax etc. The applications in reliability modelling and stress-strength analysis are considered.Problems of estimation of parameters is addressed. Various properties are examined. Modelling with re...

متن کامل

Construction of Stationary Time Series via the Gibbs Sampler with Application to Volatility Models

In this paper, we provide a method for modelling stationary time series. We allow the family of marginal densities for the observations to be speci ed. Our approach is to construct the model with a speci ed marginal family and build the dependence structure around it. We show that the resulting time series is linear with a simple autocorrelation structure. In particular, we present an original ...

متن کامل

Functional-Coefficient Autoregressive Model and its Application for Prediction of the Iranian Heavy Crude Oil Price

Time series and their methods of analysis are important subjects in statistics. Most of time series have a linear behavior and can be modelled by linear ARIMA models. However, some of realized time series have a nonlinear behavior and for modelling them one needs nonlinear models. For this, many good parametric nonlinear models such as bilinear model, exponential autoregressive model, threshold...

متن کامل

Prediction of global sea cucumber capture production based on the exponential smoothing and ARIMA models

Sea cucumber catch has followed “boom-and-bust” patterns over the period of 60 years from 1950-2010, and sea cucumber fisheries have had important ecological, economic and societal roles. However, sea cucumber fisheries have not been explored systematically, especially in terms of catch change trends. Sea cucumbers are relatively sedentary species. An attempt was made to explore whether the tim...

متن کامل

Modelling discrete valued cross sectional time series with observation driven models

This paper develops computationally feasible methods for estimating random effects models in the context of regression modelling of multiple independent time series of discrete valued counts in which there is serial dependence. Given covariates, random effects and process history, the observed responses at each time in each series are independent and have an exponential family distribution. We ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1999